Intelligent phishing detection and protection scheme for online transactions
نویسندگان
چکیده
Phishing is an instance of social engineering techniques used to deceive users into giving their sensitive information using an illegitimate website that looks and feels exactly like the target organization website. Most phishing detection approaches utilizes Uniform Resource Locator (URL) blacklists or phishing website features combined with machine learning techniques to combat phishing. Despite the existing approaches that utilize URL blacklists, they cannot generalize well with new phishing attacks due to human weakness in verifying blacklists, while the existing feature-based methods suffer high false positive rates and insufficient phishing features. As a result, this leads to an inadequacy in the online transactions. To solve this problem robustly, the proposed study introduces new inputs (Legitimate site rules, User-behavior profile, PhishTank, User-specific sites, Pop-Ups from emails) which were not considered previously in a single protection platform. The idea is to utilize a Neuro-Fuzzy Scheme with 5 inputs to detect phishing sites with high accuracy in real-time. In this study, 2-Fold cross-validation is applied for training and testing the proposed model. A total of 288 features with 5 inputs were used and has so far achieved the best performance as compared to all previously reported results in the field. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Phishing Detection Plug-In Toolbar Using Intelligent Fuzzy-Classification Mining Techniques
Detecting phishing website is a complex task which requires significant expert knowledge and experience. So far, various solutions have been proposed and developed to address these problems. Most of these approaches are not able to make a decision dynamically on whether the site is in fact phished, giving rise to a large number of false positives. In this paper we have investigated and develope...
متن کاملIntelligent Security for Phishing Online using Adaptive Neuro Fuzzy Systems
Anti-phishing detection solutions employed in industry use blacklist-based approaches to achieve low falsepositive rates, but blacklist approaches utilizes website URLs only. This study analyses and combines phishing emails and phishing web-forms in a single framework, which allows feature extraction and feature model construction. The outcome should classify between phishing, suspicious, legit...
متن کاملAnti-Phishing framework based on Extended Visual Cryptography and QR code
Nowadays Online transactions are become very common and there are various attacks occur behind this. In these types of various attacks, phishing is very common attack. For detecting this attack various anti-phishing mechanisms are used. Propose a new authentication scheme for se-cure OTP distribution in phishing website detection through EVC and QR codes. The Website Detection using extended vi...
متن کاملPhishing Detection in IMs using Domain Ontology and CBA - An innovative Rule Generation Approach
User ignorance towards the use of communication services like Instant Messengers, emails, websites, social networks etc. is becoming the biggest advantage for phishers. It is required to create technical awareness in users by educating them to create a phishing detection application which would generate phishing alerts for the user so that phishing messages are not ignored. The lack of basic se...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013